
legislice
Release 0.6.0

Matt Carey

Sep 20, 2021

CONTENTS

1 Guides 3
1.1 Downloading Legislation . 3
1.2 Comparing Enactments . 8

2 Development Updates 15
2.1 Reporting Bugs and Issues . 15
2.2 Current Updates . 15

3 API Documentation 19
3.1 Download Client . 19
3.2 Enactments . 22
3.3 Citations . 27
3.4 Enactment Groups . 28

4 Indices and tables 29

Index 31

i

ii

legislice, Release 0.6.0

Release v. 0.6.0.

Legislice is a utility for downloading the text of statutes and constitutional provisions, and then creating computable
objects representing passages from those provisions.

CONTENTS 1

legislice, Release 0.6.0

2 CONTENTS

CHAPTER

ONE

GUIDES

To access interactive versions of these guides in Jupyter Notebooks, you can download the Legislice repository on
GitHub.

1.1 Downloading Legislation

Legislice is a utility for downloading the text of statutes and constitutional provisions, and then creating computable
objects representing passages from those provisions. This guide will show how to get started.

Legislice depends on the AuthoritySpoke API as its source of legislative text. Currently the API serves the text of the
United States Constitution, plus versions of the United States Code in effect since 2013. Provisions of the United States
Code that were repealed prior to 2013 aren’t yet available through the API, and neither are any regulations or any state
law.

1.1.1 Using an API token

To get started, make an account on authorityspoke.com. Then go to the User Profile page, where you can find your API
token. The token is a 40-character string of random letters and numbers. You’ll be sending this token to AuthoritySpoke
to validate each API request, and you should keep it secret as you would a password.

There are several ways for Python to access your API token. One way would be to simply define it as a Python string,
like this:

>>> TOKEN = "YOU_COULD_PUT_YOUR_API_TOKEN_HERE"

However, a better option is to make your API token an environment variable, and then use Python to access that
variable. Using a Python library called dotenv, you can define an environment variable in a file called .env in the root
of your project directory. For instance, the contents of the file .env could look like this:

LEGISLICE_API_TOKEN=YOUR_API_TOKEN_GOES_HERE

By doing this, you can avoid having a copy of your API token in your Python working file or notebook. That makes it
easier to avoid accidentally publishing the API token or sharing it with unauthorized people.

Here’s an example of loading an API token from a .env file using dotenv.

>>> import os
>>> from dotenv import load_dotenv
>>> load_dotenv()
True
>>> TOKEN = os.getenv("LEGISLICE_API_TOKEN")

3

https://github.com/mscarey/legislice
https://authorityspoke.com/
https://authorityspoke.com/account/signup/
https://authorityspoke.com/account/profile/
https://pypi.org/project/python-dotenv/

legislice, Release 0.6.0

Now you can use the API token to create a Legislice Client object. This object holds your API token, so you can
reuse the Client without re-entering your API token repeatedly.

>>> from legislice.download import Client
>>> client = Client(api_token=TOKEN)

1.1.2 Fetching a provision from the API

To download legislation using the Client, we must specify a path to the provision we want, and optionally we can
specify the date of the version of the provision we want. If we don’t specify a date, we’ll be given the most recent
version of the provision.

The path citation format is based on the section identifiers in the United States Legislative Markup standard, which is
a United States government standard used by the Office of the Law Revision Counsel for publishing the United States
Code. Similar to a URL path in a web address, the path format is a series of labels connected with forward slashes.
The first part identifies the jurisdiction, the second part (if any) identifies the legislative code within that jurisdiction,
the third part identifies the next-level division of the code such as a numbered title, and so on.

If we don’t know the right citation for the provision we want, we can sign in to an AuthoritySpoke account and browse
the directory of available provisions, where the links to each provision show the correct path for that provision. Or we
can browse an HTML version of the API itself. If the error message “Authentication credentials were not provided”
appears, that means we aren’t signed in, and we might want to go back to the login page.

The fetch()method makes an API call to AuthoritySpoke, and returns JSON that is been converted to a Python dict.
There are fields representing the content of the provision, the start_date when the provision went into effect, and
more.

Here’s an example of how to fetch the text of the Fourth Amendment using the Client.

>>> data = client.fetch(query="/us/const/amendment/IV")
>>> data
{'heading': 'AMENDMENT IV.',
'start_date': '1791-12-15',
'node': '/us/const/amendment/IV',
'text_version': {

'id': 735706,
'url': 'https://authorityspoke.com/api/v1/textversions/735706/',
'content': 'The right of the people to be secure in their persons, houses, papers,␣

→˓and effects, against unreasonable searches and seizures, shall not be violated, and no␣
→˓Warrants shall issue, but upon probable cause, supported by Oath or affirmation, and␣
→˓particularly describing the place to be searched, and the persons or things to be␣
→˓seized.'},
'url': 'https://authorityspoke.com/api/v1/us/const/amendment/IV/',
'end_date': None,
'children': [],
'citations': [],
'parent': 'https://authorityspoke.com/api/v1/us/const/amendment/'}

4 Chapter 1. Guides

https://uscode.house.gov/download/resources/USLM-User-Guide.pdf
https://authorityspoke.com/legislice/
https://authorityspoke.com/api/v1/
https://authorityspoke.com/account/login/
https://docs.python.org/3/library/stdtypes.html#dict

legislice, Release 0.6.0

1.1.3 Loading an Enactment object

If all we needed was to get a JSON response from the API, we could have used a more general Python library like
requests. Legislice also lets us load the JSON response as a legislice.enactments.Enactment object, which
has methods for selecting some but not all of the provision’s text. One way to load an Enactment is with the Client’s
read_from_json() method.

>>> fourth_a = client.read_from_json(data)
>>> fourth_a.node
'/us/const/amendment/IV'

Instead of always using fetch() followed by read_from_json(), we can combine the two functions together with
read(). In this example, we’ll use read() to load a constitutional amendment that contains subsections, to show that
the structure of the amendment is preserved in the resulting Enactment object.

>>> thirteenth_a = client.read(query="/us/const/amendment/XIII")

The string representation of this provision includes both the selected text (which is the full text of the amendment) as
well as a citation to the provision with its effective date.

Currently the only supported citation format is the path-style citation used in United States Legislative Markup. Future
versions of Legislice may support the ability to convert to traditional statute citation styles.

>>> str(thirteenth_a)
'/us/const/amendment/XIII (1865-12-18)'

The text of the Thirteenth Amendment is all within Section 1 and Section 2 of the amendment. You can use the
Enactment.children property to get a list of provisions contained within an Enactment.

>>> len(thirteenth_a.children)
2

Then we can access each child provision as its own Enactment object from the children list. Remember that lists in
Python start at index 0, so if we want Section 2, we’ll find it at index 1 of the children list.

>>> str(thirteenth_a.children[1].text)
'Congress shall have power to enforce this article by appropriate legislation.'

1.1.4 Downloading prior versions of an Enactment

The API can be used to access specific provisions deeply nested within the United States Code, and also to access
multiple date versions of the same provision. Here’s a subsection of an appropriations statute as of 2015. We can use
the end_date attribute to find when this version of the statute was displaced by a new version.

>>> old_grant_objective = client.read(query="/us/usc/t42/s300hh-31/a/1", date="2015-01-01
→˓")
>>> old_grant_objective.content
'strengthening epidemiologic capacity to identify and monitor the occurrence of␣
→˓infectious diseases and other conditions of public health importance;'
>>> old_grant_objective.end_date
datetime.date(2019, 7, 5)

And here’s the same provision as of 2020. Its content has changed.

1.1. Downloading Legislation 5

legislice, Release 0.6.0

>>> new_grant_objective = client.read(query="/us/usc/t42/s300hh-31/a/1", date="2020-01-01
→˓")
>>> new_grant_objective.content
'strengthening epidemiologic capacity to identify and monitor the occurrence of␣
→˓infectious diseases, including mosquito and other vector-borne diseases, and other␣
→˓conditions of public health importance;'

The 2020 version of the statute has None in its end_date field because it’s still in effect.

>>> str(new_grant_objective.end_date)
'None'

1.1.5 Exploring the structure of a legislative code

When we query the API for a provision at a path with less than four parts (e.g., when we query for an entire Title of
the United States Code), the response doesn’t include the full text of the provision’s children. Instead, it only contains
URLs that link to the child nodes. These URL links might help to automate the process of navigating the API and
discovering the provisions we want. Here’s an example that discovers the URLs for the articles of the US Constitution.

>>> articles = client.read(query="/us/const/article")
>>> articles.children
['https://authorityspoke.com/api/v1/us/const/article/I/', 'https://authorityspoke.com/
→˓api/v1/us/const/article/II/', 'https://authorityspoke.com/api/v1/us/const/article/III/
→˓', 'https://authorityspoke.com/api/v1/us/const/article/IV/', 'https://authorityspoke.
→˓com/api/v1/us/const/article/V/', 'https://authorityspoke.com/api/v1/us/const/article/
→˓VI/', 'https://authorityspoke.com/api/v1/us/const/article/VII/']

1.1.6 Downloading Enactments from cross-references

If an Enactment loaded from the API references other provisions, it may provide a list of CrossReference objects
when we call its cross_references()method. You can pass one of these CrossReference objects to the fetch()
or read() method of the download client to get the referenced Enactment.

>>> infringement_provision = client.read("/us/usc/t17/s109/b/4")
>>> str(infringement_provision.text)
'Any person who distributes a phonorecord or a copy of a computer program (including any␣
→˓tape, disk, or other medium embodying such program) in violation of paragraph (1) is␣
→˓an infringer of copyright under section 501 of this title and is subject to the␣
→˓remedies set forth in sections 502, 503, 504, and 505. Such violation shall not be a␣
→˓criminal offense under section 506 or cause such person to be subject to the criminal␣
→˓penalties set forth in section 2319 of title 18.'
>>> len(infringement_provision.cross_references())
2
>>> str(infringement_provision.cross_references()[0])
'CrossReference(target_uri="/us/usc/t17/s501", reference_text="section 501 of this title
→˓")'
>>> reference_to_title_18 = infringement_provision.cross_references()[1]
>>> referenced_enactment = client.read(reference_to_title_18)
>>> referenced_enactment.text[:239]
'Any person who violates section 506(a) (relating to criminal offenses) of title 17␣
→˓shall be punished as provided in subsections (b), (c), and (d) and such penalties␣
→˓shall be in addition to any other provisions of title 17 or any other law.'(continues on next page)

6 Chapter 1. Guides

legislice, Release 0.6.0

(continued from previous page)

An important caveat for this feature is that the return value of the cross_references()method will only be populated
with internal links that have been marked up in the United States Legislative Markup XML published by the legislature.
Unfortunately, some parts of the United States Code don’t include any link markup when making references to other
legislation.

1.1.7 Downloading Enactments from inbound citations

The method in the previous section finds and downloads Enactments cited by a known Enactment. But sometimes we
want to discover provisions that cite to a particular provision. These “inbound” citations are not stored on the Python
Enactment object. Instead, we have to go back to the download client and make an API request to get them, using the
citations_to() method.

In this example, we’ll get all the citations to the provision of the United States Code cited /us/usc/t17/s501 (in other
words, Title 17, Section 501). This gives us all known provisions that cite to that node in the document tree, regardless
of whether different text has been enacted at that node at different times.

>>> inbound_refs = client.citations_to("/us/usc/t17/s501")
>>> str(inbound_refs[0])
'InboundReference to /us/usc/t17/s501, from (/us/usc/t17/s109/b/4 2013-07-18)'

We can examine one of these InboundReference objects to see the text creating the citation.

>>> inbound_refs[0].content
'Any person who distributes a phonorecord or a copy of a computer program (including any␣
→˓tape, disk, or other medium embodying such program) in violation of paragraph (1) is␣
→˓an infringer of copyright under section 501 of this title and is subject to the␣
→˓remedies set forth in sections 502, 503, 504, and 505. Such violation shall not be a␣
→˓criminal offense under section 506 or cause such person to be subject to the criminal␣
→˓penalties set forth in section 2319 of title 18.'

But an InboundReference doesn’t have all the same information as an Enactment object. Importantly, it doesn’t
have the text of any subsections nested inside the cited provision. We can use the download Client again to convert
the InboundReference into an Enactment.

>>> citing_enactment = client.read(inbound_refs[0])
>>> citing_enactment.node
'/us/usc/t17/s109/b/4'
>>> citing_enactment.text
'Any person who distributes a phonorecord or a copy of a computer program (including any␣
→˓tape, disk, or other medium embodying such program) in violation of paragraph (1) is␣
→˓an infringer of copyright under section 501 of this title and is subject to the␣
→˓remedies set forth in sections 502, 503, 504, and 505. Such violation shall not be a␣
→˓criminal offense under section 506 or cause such person to be subject to the criminal␣
→˓penalties set forth in section 2319 of title 18.'

This Enactment happens not to have any child nodes nested within it, so its full text is the same as what we saw when
we looked at the InboundReference’s content attribute.

>>> citing_enactment.children
[]

1.1. Downloading Legislation 7

https://authorityspoke.com/legislice/us/usc/t17/s501/

legislice, Release 0.6.0

Sometimes, an InboundReference has more than one citation and start date. That means that the citing text has been
enacted in different places at different times. This can happen because the provisions of a legislative code have been
reorganized and renumbered. Here’s an example. We’ll look for citations to Section 1301 of USC Title 2, which is a
section containing definitions of terms that will be used throughout the rest of Title 2.

>>> refs_to_definitions = client.citations_to("/us/usc/t2/s1301")
>>> str(refs_to_definitions[0])
'InboundReference to /us/usc/t2/s1301, from (/us/usc/t2/s4579/a/4/A 2018-05-09) and 2␣
→˓other locations'

The citations_to() method returns a list, and two of the InboundReferences in this list have been enacted in three
different locations.

>>> str(refs_to_definitions[0].locations[0])
'(/us/usc/t2/s60c-5/a/2/A 2013-07-18)'

When we pass an InboundReference to read(), the download client makes an Enactment from the most recent location
where the citing provision has been enacted.

>>> str(client.read(refs_to_definitions[0]))
'/us/usc/t2/s4579/a/4/A (2018-05-09)'

If we need the Enactment representing the statutory text before it was moved and renumbered, we can pass one of the
CitingProvisionLocation objects to the Client instead. Note that the Enactment we get this way has the same
content text, but a different citation node, an earlier start date, and an earlier end date.

>>> citing_enactment_before_renumbering = client.read(refs_to_definitions[0].
→˓locations[0])
>>> str(citing_enactment_before_renumbering)
'/us/usc/t2/s60c-5/a/2/A (2013-07-18)'

>>> citing_enactment_before_renumbering.end_date
datetime.date(2014, 1, 16)

1.2 Comparing Enactments

This notebook will show how legislice provides convenient functions for comparing passages of legislative text.

As explained in the Downloading Legislation guide, begin by creating a Client to download and create Enactment
objects.

>>> import os
>>> from dotenv import load_dotenv
>>> from legislice.download import Client
>>> load_dotenv()
True
>>> TOKEN = os.getenv("LEGISLICE_API_TOKEN")
>>> client = Client(api_token=TOKEN)

8 Chapter 1. Guides

https://authorityspoke.com/legislice/us/usc/t2/s1301/

legislice, Release 0.6.0

1.2.1 Features of an Enactment

Now let’s load the Fourteenth Amendment. We can get its effective date as a Python datetime.date object.

>>> fourteenth_amendment = client.read(query="/us/const/amendment/XIV")
>>> fourteenth_amendment.start_date
datetime.date(1868, 7, 28)

We can also view its level, which is “constitution”, as opposed to “statute” or “regulation”.

>>> fourteenth_amendment.level
<CodeLevel.CONSTITUTION: 1>

And we can find out the node, or place in the document tree, for the Fourteenth Amendment itself as well at its
subsections.

>>> fourteenth_amendment.node
'/us/const/amendment/XIV'

>>> fourteenth_amendment.children[0].node
'/us/const/amendment/XIV/1'

We can also isolate some parts of the node path, such as the jurisdiction and code the amendment comes from.

>>> fourteenth_amendment.jurisdiction
'us'

>>> fourteenth_amendment.code
'const'

1.2.2 Selecting text

When we use the text()method, we get all the enacted text in the Fourteenth Amendment, including all its subsections.

>>> fourteenth_amendment.text
'All persons born or naturalized in the United States, and subject to the jurisdiction␣
→˓thereof, are citizens of the United States and of the State wherein they reside. No␣
→˓State shall make or enforce any law which shall abridge the privileges or immunities␣
→˓of citizens of the United States; nor shall any State deprive any person of life,␣
→˓liberty, or property, without due process of law; nor deny to any person within its␣
→˓jurisdiction the equal protection of the laws. Representatives shall be apportioned␣
→˓among the several States according to their respective numbers, counting the whole␣
→˓number of persons in each State, excluding Indians not taxed. But when the right to␣
→˓vote at any election for the choice of electors for President and Vice President of␣
→˓the United States, Representatives in Congress, the Executive and Judicial officers of␣
→˓a State, or the members of the Legislature thereof, is denied to any of the male␣
→˓inhabitants of such State, being twenty-one years of age, and citizens of the United␣
→˓States, or in any way abridged, except for participation in rebellion, or other crime,␣
→˓the basis of representation therein shall be reduced in the proportion which the␣
→˓number of such male citizens shall bear to the whole number of male citizens twenty-
→˓one years of age in such State. No person shall be a Senator or Representative in␣
→˓Congress, or elector of President and Vice President, or hold any office, civil or␣
→˓military, under the United States, or under any State, who, having previously taken an␣
→˓oath, as a member of Congress, or as an officer of the United States, or as a member␣
→˓of any State legislature, or as an executive or judicial officer of any State, to␣
→˓support the Constitution of the United States, shall have engaged in insurrection or␣
→˓rebellion against the same, or given aid or comfort to the enemies thereof. But␣
→˓Congress may by a vote of two-thirds of each House, remove such disability. The␣
→˓validity of the public debt of the United States, authorized by law, including debts␣
→˓incurred for payment of pensions and bounties for services in suppressing insurrection␣
→˓or rebellion, shall not be questioned. But neither the United States nor any State␣
→˓shall assume or pay any debt or obligation incurred in aid of insurrection or␣
→˓rebellion against the United States, or any claim for the loss or emancipation of any␣
→˓slave; but all such debts, obligations and claims shall be held illegal and void. The␣
→˓Congress shall have power to enforce, by appropriate legislation, the provisions of␣
→˓this article.'

(continues on next page)

1.2. Comparing Enactments 9

https://docs.python.org/3/library/datetime.html#datetime.date
https://authorityspoke.com/legislice/us/const/amendment/XIV

legislice, Release 0.6.0

(continued from previous page)

However, we might want an Enactment object that only represents a part of the Fourteenth Amendment that’s relevant
to a particular case. We can use the select() method to limit the text of the provision that’s considered “selected”.
One way to do this is with a series of strings that exactly match the text we want to select. Because we’re selecting only
some of the text, the output of the selected_text() method will be different.

>>> passages = fourteenth_amendment.select(["No State shall", "deprive any person of",
→˓"liberty", "without due process of law"])
>>> passages.selected_text()
'...No State shall...deprive any person of...liberty...without due process of law...'

The select() method returns a new EnactmentPassage object, which holds both the Enactment and a
TextPositionSet indicating which text is selected. But if we want to select additional text without clearing the
existing selection, we can use the EnactmentPassage’s select_more() method. It’s okay if the selection we pass in
to select_more() overlaps with text we’ve already selected.

>>> passages.select_more("life, liberty, or property,")
>>> passages.selected_text()
'...No State shall...deprive any person of life, liberty, or property, without due␣
→˓process of law...'

If we need to select a passage that occurs more than once in the Enactment, we can import the TextQuoteSelector
class instead of using strings. With a TextQuoteSelector, we specify not just the exact phrase we want to select,
but also a prefix or suffix that makes the phrase uniquely identifiable. In this example, the text being selected is
the second instance of the phrase “twenty-one years of age” in the Fourteenth Amendment.

>>> from legislice import TextQuoteSelector
>>> age_passage = fourteenth_amendment.select(TextQuoteSelector(prefix="male citizens ",␣
→˓exact="twenty-one years of age"))
>>> age_passage.selected_text()
'...twenty-one years of age...'

If we happen to know the start and end indices of the passage we want, then we can use a TextPositionSelector or
TextPositionSet to select it, instead of specifying the exact text.

>>> from legislice.enactments import TextPositionSelector, TextPositionSet
>>> amendment_passage = fourteenth_amendment.
→˓select(TextPositionSet(positions=[TextPositionSelector(start=1921, end=1973),␣
→˓TextPositionSelector(start=2111, end=2135)]))
>>> amendment_passage.selected_text()
'...The validity of the public debt of the United States...shall not be questioned....'

We can also use the method child_passages() to get a new EnactmentPassage with only the subsection of the
Fourteenth Amendment that interests us. The citation stored in the node attribute is now different, but the text selector
still remains in place, so we can still get the same selected text.

>>> public_debt_provision = amendment_passage.child_passages[3]
>>> public_debt_provision.node
'/us/const/amendment/XIV/4'
>>> public_debt_provision.selected_text()
'The validity of the public debt of the United States...shall not be questioned....'

10 Chapter 1. Guides

https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextQuoteSelector
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextQuoteSelector
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSelector
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet

legislice, Release 0.6.0

1.2.3 Comparing Selected Text

Next, we’ll create a new EnactmentPassage to compare by changing the selected text of the original Enactment to
include all the text that was selected before, plus more.

>>> debt_passage = fourteenth_amendment.select(TextPositionSelector(start=1921,␣
→˓end=2135))
>>> debt_passage.selected_text()
'...The validity of the public debt of the United States, authorized by law, including␣
→˓debts incurred for payment of pensions and bounties for services in suppressing␣
→˓insurrection or rebellion, shall not be questioned....'

Now we can compare the text selections in these two EnactmentPassages. The implies() method checks whether
the Enactment on the left has all the text of the Enactment on the right. The means()method checks whether they both
have the same text.

>>> fourteenth_amendment.implies(public_debt_provision)
True

We can also use Python’s built-in “greater than or equal” operator as an alias for the implies() method.

>>> fourteenth_amendment >= public_debt_provision
True

Notice that Legislice is able to compare these two passages even though amendment is a text selection from the entire
Fourteenth Amendment, while public_debt_provision is a text selection from only section 4 of the Fourteenth
Amendment. We can verify this by checking the “node” attribute on each Enactment.

>>> fourteenth_amendment.node
'/us/const/amendment/XIV'

>>> public_debt_provision.node
'/us/const/amendment/XIV/4'

To determine whether two Enactments have the same text (and neither has any more than the other), use the means()
method. Here’s how we can check that the Fifth Amendment doesn’t have identical text to the first section of the
Fourteenth Amendment.

>>> fifth_amendment = client.read(query="/us/const/amendment/V")
>>> fifth_amendment.text
'No person shall be held to answer for a capital, or otherwise infamous crime, unless on␣
→˓a presentment or indictment of a Grand Jury, except in cases arising in the land or␣
→˓naval forces, or in the Militia, when in actual service in time of War or public␣
→˓danger; nor shall any person be subject for the same offence to be twice put in␣
→˓jeopardy of life or limb; nor shall be compelled in any Criminal Case to be a witness␣
→˓against himself; nor be deprived of life, liberty, or property, without due process of␣
→˓law; nor shall private property be taken for public use, without just compensation.'

>>> fourteenth_amendment_section_1 = client.read(query="/us/const/amendment/XIV/1")
>>> fifth_amendment.means(fourteenth_amendment_section_1)
False

However, the Fifth Amendment and the first section of the Fourteenth Amendment both happen to contain the phrase
“life, liberty, or property, without due process of law”. If we select that same passage from both provisions, then we
can use the means() method to verify that both text selections are identical.

1.2. Comparing Enactments 11

legislice, Release 0.6.0

>>> phrase = "life, liberty, or property, without due process of law"
>>> due_process_14 = fourteenth_amendment_section_1.select(phrase)
>>> due_process_5 = fifth_amendment.select(phrase)
>>> due_process_14.means(due_process_5)
True

There are many situations in real legal analysis where it’s helpful to know if identical text has been enacted at different
citations. It could mean that the identical section has been renumbered, or it could mean that a judicial interpretation
of one Enactment is also relevant to the other Enactment. Legislice’s implies() and means() methods can help to
automate that analysis.

Since >= is an alias for implies(), we might expect to be able to use == as an alias for means(). Currently we
can’t do that, because overriding the equals function could interfere with Python’s ability to determine what objects are
identical, and could cause bugs that would be difficult to diagnose. However, we can use > as an alias that returns True
only if implies() would return True while means() would return False.

1.2.4 Combining Enactments

When we have two Enactments and either they are at the same node or one is a descendant of the other, we can combine
them into a new Enactment using the addition sign. Here’s an example from a copyright statute in the United States
Code. The example shows that we can load section /us/usc/t17/s103, select some text from subsection b of that
provision, and then add it to a separate Enactment representing the entirety of subsection /us/usc/t17/s103/a.
Legislice combines the text from subsection a and subsection b in the correct order.

>>> s103 = client.read(query="/us/usc/t17/s103", date="2020-01-01")
>>> selections = ["The copyright in such work is independent of", "any copyright␣
→˓protection in the preexisting material."]
>>> s103_passage = s103.select(selections)
>>> s103_passage.selected_text()
'...The copyright in such work is independent of...any copyright protection in the␣
→˓preexisting material.'

>>> s103a = client.read(query="/us/usc/t17/s103/a", date="2020-01-01")
>>> s103a.text
'The subject matter of copyright as specified by section 102 includes compilations and␣
→˓derivative works, but protection for a work employing preexisting material in which␣
→˓copyright subsists does not extend to any part of the work in which such material has␣
→˓been used unlawfully.'

>>> combined_passage = s103_passage + s103a
>>> combined_passage.selected_text()
'The subject matter of copyright as specified by section 102 includes compilations and␣
→˓derivative works, but protection for a work employing preexisting material in which␣
→˓copyright subsists does not extend to any part of the work in which such material has␣
→˓been used unlawfully....The copyright in such work is independent of...any copyright␣
→˓protection in the preexisting material.'

12 Chapter 1. Guides

legislice, Release 0.6.0

1.2.5 EnactmentGroups

When we want to work with groups of Enactments that may or may not be nested inside one another, we can put
them together in an EnactmentGroup. When we create a new EnactmentGroup or __add__() two EnactmentGroups
together, any overlapping Enactments inside will be combined into a single Enactment.

In this example, we create two EnactmentGroups called left and right, each containing two Enactments, and add
them together. Because one of the Enactments in left overlaps with one of the Enactments in right, when we add
left and right together those two Enactments will be combined into one. Thus the resulting EnactmentGroup will
contain three Enactments instead of four.

>>> from legislice import EnactmentGroup
>>> first = client.read(query="/us/const/amendment/I")
>>> establishment_clause=first.select("Congress shall make no law respecting an␣
→˓establishment of religion")
>>> speech_clause = first.select(["Congress shall make no law", "abridging the freedom␣
→˓of speech"])
>>> second = client.read(query="/us/const/amendment/II")
>>> arms_clause = second.select("the right of the people to keep and bear arms, shall␣
→˓not be infringed.")
>>> third = client.read(query="/us/const/amendment/III")
>>> left = EnactmentGroup(passages=[establishment_clause, arms_clause])
>>> right = EnactmentGroup(passages=[third, speech_clause])
>>> combined = left + right
>>> print(combined)
the group of Enactments:
"Congress shall make no law respecting an establishment of religion...abridging the␣

→˓freedom of speech..." (/us/const/amendment/I 1791-12-15)
"...the right of the people to keep and bear arms, shall not be infringed." (/us/const/

→˓amendment/II 1791-12-15)
"No soldier shall, in time of peace be quartered in any house, without the consent of␣

→˓the Owner, nor in time of war, but in a manner to be prescribed by law." (/us/const/
→˓amendment/III 1791-12-15)
>>> len(combined)
3

1.2.6 Converting Enactments to JSON

When we want a representation of a legislative passage that’s precise, machine-readable, and easy to share over the inter-
net, we can use Legislice’s JSON schema. Here’s how to convert the Enactment object called combined_enactment,
which was created in the example above, to JSON.

As explained in the section above, this JSON represents a selection of three nonconsecutive passages from the most
recent version of section 103 of Title 17 of the United States Code. The schema’s json() method returns a JSON
string, while the dict() method returns a Python dictionary.

>>> combined.passages[0].json()
'{"enactment": {"node": "/us/const/amendment/I", "start_date": "1791-12-15", "heading":
→˓"AMENDMENT I.", "text_version": {"content": "Congress shall make no law respecting an␣
→˓establishment of religion, or prohibiting the free exercise thereof; or abridging the␣
→˓freedom of speech, or of the press; or the right of the people peaceably to assemble,␣
→˓and to petition the Government for a redress of grievances.", "url": "https://
→˓authorityspoke.com/api/v1/textversions/735703/", "id": 735703}, "end_date": null,
→˓"first_published": "1788-06-21", "earliest_in_db": "1788-06-21", "anchors": [],
→˓"citations": [], "name": "", "children": []}, "selection": {"positions": [{"start": 0,
→˓"end": 66}, {"start": 113, "end": 144}], "quotes": []}}'

(continues on next page)

1.2. Comparing Enactments 13

https://authorityspoke.com/legislice/us/usc/t17/s103@2020-11-17/

legislice, Release 0.6.0

(continued from previous page)

1.2.7 Formatting Citations (Experimental)

Legislice has preliminary support for serializing citations for Enactment objects based on Citation Style Language
JSON. The goal of this feature is to support compatibility with Jurism. Please open an issue in the Legislice repo if
you have suggestions for how this feature should develop to support your use case.

>>> cares_act_benefits = client.read("/us/usc/t15/s9021/")
>>> cares_act_benefits.heading
'Pandemic unemployment assistance'
>>> citation = cares_act_benefits.as_citation()
>>> str(citation)
'15 U.S. Code § 9021 (2020)'
>>> cares_act_benefits.csl_json()
'{"jurisdiction": "us", "code_level_name": "CodeLevel.STATUTE", "volume": "15", "section
→˓": "sec. 9021", "type": "legislation", "container-title": "U.S. Code", "event-date": {
→˓"date-parts": [["2020", 4, 10]]}}'

This CSL-JSON format currently only identifies the cited provision down to the section level. Calling the
as_citation() method on a subsection or deeper nested provision will produce the same citation data as its par-
ent section.

14 Chapter 1. Guides

https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html
https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html
https://juris-m.github.io/
https://github.com/mscarey/legislice/issues

CHAPTER

TWO

DEVELOPMENT UPDATES

2.1 Reporting Bugs and Issues

Your feedback is very valuable. If you discover a bug, if Legislice isn’t behaving as expected, or if you want to suggest
a new feature, please comment or open an issue on Legislice’s GitHub issue tracker. For other comments please use
the Twitter contact information below.

If you want to submit a pull request for either Legislice or AuthoritySpoke, please also submit the AuthoritySpoke
contributor license agreement.

2.2 Current Updates

2.2.1 GitHub

You can find open issues and current changes to Legislice through its GitHub repo.

2.2.2 Twitter

On Twitter, you can follow @authorityspoke or @mcareyaus for project updates.

2.2.3 Changelog

0.6.0 (2021-09-20)

• add EnactmentPassage class

• select_from_text_positions_without_nesting doesn’t accept RangeSet

• Enactment.limit_selection.start must be an int

• no separate LinkedEnactment class for Enactments with URL links as children

• remove BaseEnactment parent class

• replace Marshmallow schemas with Pydantic models

15

https://github.com/mscarey/legislice/issues
https://github.com/mscarey/AuthoritySpoke/blob/master/contributor_agreement.txt
https://github.com/mscarey/AuthoritySpoke/blob/master/contributor_agreement.txt
https://github.com/mscarey/legislice
https://twitter.com/authorityspoke
https://twitter.com/mcareyaus

legislice, Release 0.6.0

0.5.2 (2021-05-20)

• sort EnactmentGroups by level

• add California to KNOWN_CODES

0.5.1 (2021-05-08)

• separate schemas for YAML and JSON input

• flag determines if read_from_json uses text expansion

• change InboundReference to dataclass

0.5.0 (2021-03-26)

• add EnactmentGroup class

• drop Python 3.7 support

• import Citation and Client at top level of library

• Client.fetch_cross_reference no longer will ignore “date” param

• EnactmentGroup init method can accept None as “enactments” param

• remove “text expansion” module and functions

• remove ExpandableSchema class

0.4.1 (2020-12-31)

• fix bug: Client made API request requiring 301 redirect

0.4.0 (2020-12-29)

• add Citation class

• add Citation Style Language JSON serializer methods

• remove mock Clients by migrating tests to pytest-vcr

0.3.1 (2020-12-12)

• order fields in serialized Enactment JSON output format for readability

• remove include_start and include_end from serialized Enactment JSON output

• fix bug: Enactment.select_all created zero length selectors

16 Chapter 2. Development Updates

legislice, Release 0.6.0

0.3.0 (2020-11-17)

• add CrossReference class as memo of cited Enactment to download

• add CitingProvisionLocation as memo of citing Enactment to download

• add cross_references attr to Enactment model

• add citations_to method to Client class

• EnactmentSchema’s content field is moved to a new nested model called TextVersionSchema

• add ability to pass CitingProvisionLocation to Client.read

• add ability to pass InboundReference to Client.read

0.2.0 (2020-08-30)

• don’t add ellipsis to selected_text for node with no text

• accept list of strings to generate anchorpoint TextPositionSet

• combine selected text passages within 3 characters of each other

0.1.1 (2020-08-23)

• initial release

2.2. Current Updates 17

legislice, Release 0.6.0

18 Chapter 2. Development Updates

CHAPTER

THREE

API DOCUMENTATION

3.1 Download Client

class legislice.download.Client(api_token='', api_root='https://authorityspoke.com/api/v1',
update_coverage_from_api=True)

Downloader for legislative text.

citations_to(target)
Load an InboundReference object for each provision citing the target USLM provision URI.

Parameters target (Union[str, Enactment, CrossReference]) – a string URI for the cited
node, an Enactment at the cited node, or a CrossReference to the cited node

Return type List[InboundReference]

Returns a list of InboundReferences to the cited node

fetch(query, date='')
Download legislative provision from string identifier or cross-reference.

Parameters

• query (Union[str, CitingProvisionLocation, CrossReference,
InboundReference]) – A cross-reference to the desired legislative provision, or a
path to the desired legislation section using the United States Legislation Markup tree-like
citation format.

• date (Union[date, str]) – The date of the desired version of the provision to be down-
loaded. This is not needed if a CrossReference passed to the query param specifies a
date. If no date is provided, the API will use the most recent date.

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

fetch_citations_to(target)
Query API for citations to a given target node, withoout loading them as InboundCitations.

Parameters target (Union[str, Enactment, CrossReference]) – a string URI for the cited
node, an Enactment at the cited node, or a CrossReference to the cited node

Return type List[Dict]

Returns a list of dicts representing citations to the cited node

fetch_citing_provision(query)
Download legislative provision as Enactment from CitingProvisionLocation.

CitingProvisionLocations are found in the locations attribute of the InboundReference objects obtained
when using the citations_to method.

19

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict

legislice, Release 0.6.0

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

fetch_cross_reference(query, date='')
Download legislative provision from cross-reference.

Parameters

• query (CrossReference) – A cross-reference to the desired legislative provision. Found
by calling the cross_references()method on an Enactment that contains one or more
citations to other provisions.

• date (Union[date, str]) – The date of the desired version of the provision to be down-
loaded. This is not needed if the CrossReference passed to the query param specifies a
date. If no date is provided, the API will use the most recent date.

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

fetch_db_coverage(code_uri)
Document date range of provisions of a code of laws available in API database.

Return type Dict[str, Union[str, date]]

fetch_inbound_reference(query)
Download legislative provision from InboundReference.

Parameters query (InboundReference) – An InboundReference identifying a provision con-
taining a citation.

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

Returns An Enactment representing the provision containing the citation (not the cited provi-
sion).

If the InboundReference has been enacted more than once, the latest one will be chosen.

fetch_uri(query, date='')
Fetch data about legislation at specified path and date from Client’s assigned API root.

Parameters

• query (str) – A path to the desired legislation section using the United States
Legislation Markup tree-like citation format. Examples: “/us/const/amendment/IV”,
“/us/usc/t17/s103”

• date (Union[date, str]) – A date when the desired version of the legislation was in effect.
This does not need to be the “effective date” or the first date when the version was in effect.
However, if you select a date when two versions of the provision were in effect at the same
time, you will be given the version that became effective later.

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

get_db_coverage(uri)
Add data about the API’s coverage date range to the Enactment to be loaded.

As a side effect, changes the Client’s “coverage” attribute.

Parameters uri (str) – identifier for the Enactment to be created

Return type str

Returns identifier for the Code of the Enactment to be created

read(query, date='')
Fetch data from Client’s assigned API root and builds Enactment or LinkedEnactment.

All text is selected by default.

20 Chapter 3. API Documentation

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

legislice, Release 0.6.0

Parameters

• path – A path to the desired legislation section using the United States Legislation Markup
tree-like citation format. Examples: “/us/const/amendment/IV”, “/us/usc/t17/s103”

• date (Union[date, str]) – A date when the desired version of the legislation was in effect.
This does not need to be the “effective date” or the first date when the version was in effect.
However, if you select a date when two versions of the provision were in effect at the same
time, you will be given the version that became effective later.

Return type Enactment

read_from_json(data, use_text_expansion=True)
Create a new Enactment object using imported JSON data.

If fields are missing from the JSON, they will be fetched using the API key.

Return type Enactment

read_passage_from_json(data)
Create a new EnactmentPassage object using imported JSON data.

If fields are missing from the JSON, they will be fetched using the API key.

Return type EnactmentPassage

update_data_from_api_if_needed(data)
Update data from API with data from API coverage.

Parameters data (Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]) – a dict
representing the data from the API

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

Returns a dict representing the data from the API with updated data from API coverage

update_enactment_from_api(data)
Use API to fill in missing fields in a dict representing an Enactment.

Useful when the dict has missing data because it was created by a user.

Return type Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]

update_entries_in_enactment_index(enactment_index)
Fill in missing fields in every entry in an EnactmentIndex.

Return type Mapping[str, Dict[str, Union[Any, str, List[Union[str, Dict[str, str]]]]]]

uri_from_query(target)
Get a URI for the target object.

Return type str

url_from_enactment_path(path, date='')
Generate URL for API call for specified USLM path and date.

Return type str

legislice.download.normalize_path(path)
Make sure path starts but does not end with a slash.

Return type str

3.1. Download Client 21

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

legislice, Release 0.6.0

3.2 Enactments

class legislice.enactments.Enactment(**data)
Base class for Enactments.

Whether connected to subnodes by linking, or nesting.

Parameters

• node – identifier for the site where the provision is codified

• heading – full heading of the provision

• text_version – full text content at this node, even if not all of it is cited

• start_date – date when the text was enacted at the cited location

• known_revision_date – whether the “start_date” field is known to be a date when the
provision was revised in the code where it was publised. If False, then the Enactment refers to
a time range when the text was codified, without asserting that the Enactment was not codified
at earlier dates. This field is useful when working from incomplete legislative records.

• end_date – date when the text was removed from the cited location

• first_published – date when this Enactment’s code was first published.

• earliest_in_db – date of the earliest version of this Enactment in the database. Used
to determine whether the start_date of the Enactment is a date when the Enactment was
amended or first published.

• anchors – a list of selectors representing the part of some other document (e.g. an Opinion)
that references the Enactment. Unlike the selection field, it doesn’t reference part of the
Enactment itself. For use as a temporary place to store the anchors until they can be moved
over to the citing document.

• name – a user-assigned label for the object

as_citation()
Create Citation Style Language markup for the Enactment.

Return type Citation

property code
Get “code” part of node identifier.

property content: str
Get text for this version of the Enactment.

Return type str

convert_quotes_to_position(quotes)
Convert quote selector to the corresponding position selector for this Enactment.

Return type TextPositionSet

convert_selection_to_set(selection)
Create a TextPositionSet from a different selection method.

Return type TextPositionSet

cross_references()
Return all cross-references from this node and subnodes.

Return type List[CrossReference]

22 Chapter 3. API Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://docs.python.org/3/library/typing.html#typing.List

legislice, Release 0.6.0

csl_json()
Serialize a citation to this provision in Citation Style Language JSON.

Experimental feature. This CSL-JSON format currently only identifies the cited provision down to the
section level. A citation to a subsection or deeper nested provision will be the same as a citation to its
parent section.

See https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html for a guide to this CSL-JSON format.

Return type str

get_identifier_part(index)
Get a part of the split node identifier, by number.

Return type Optional[str]

get_string(selection)
Use text selector to get corresponding string from Enactment.

Return type str

implies(other)
Test whether self has all the text passages of other.

Return type bool

property is_federal
Check if self is from a federal jurisdiction.

property jurisdiction
Get “sovereign” part of node identifier.

property known_revision_date: bool
Determine if Enactment’s start_date reflects its last revision date.

If not, then the start_date merely reflects the earliest date that versions of the Enactment's code exist in
the database.

Return type bool

property level: str
Get level of code for this Enactment, e.g. “statute” or “regulation”.

Return type str

limit_selection(selection, start=0, end=None)
Limit selection to the range defined by start and end points.

Return type TextPositionSet

limit_selection_to_current_node(selection)
Limit selection to the current node.

Return type TextPositionSet

make_selection(selection=True, start=0, end=None)
Make a TextPositionSet for specified text in this Enactment.

Return type TextPositionSet

make_selection_of_all_text()
Return a TextPositionSet of all text in this Enactment.

Return type TextPositionSet

3.2. Enactments 23

https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet

legislice, Release 0.6.0

make_selection_of_this_node()
Return a TextPositionSet of the text at this node, not child nodes.

Return type TextPositionSet

classmethod make_text_version_from_str(value)
Allow content to be used to populate text_version.

Return type Optional[TextVersion]

means(other)
Determine if self and other have identical text.

Return type bool

property nested_children
Get nested children attribute.

property padded_length
Get length of self’s content plus one character for space before next section.

raise_error_for_extra_selector(selection)
Raise an error if any passed selectors begin after the end of the text passage.

Return type None

rangedict()
Return a RangeDict matching text spans to Enactment attributes.

Return type RangeDict

property section
Get “section” part of node identifier.

select(selection=True, start=0, end=None)
Select text from Enactment.

Return type EnactmentPassage

select_all()
Return a passage for this Enactment, including all subnodes.

Return type EnactmentPassage

property sovereign
Get “sovereign” part of node identifier.

property span_length: int
Return the length of the span of this Enactment.

Return type int

property text
Get all text including subnodes, regardless of which text is “selected”.

text_sequence(include_nones=True)
Get a sequence of text passages for this provision and its subnodes.

Return type TextSequence

property title
Get “title” part of node identifier.

tree_selection()
Return set of selectors for selected text in this provision and its children.

24 Chapter 3. API Documentation

https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://anchorpoint.readthedocs.io/en/latest/api/sequences.html#anchorpoint.textsequences.TextSequence

legislice, Release 0.6.0

Return type TextPositionSet

class legislice.enactments.EnactmentPassage(**data)
An Enactment with selectors indicating which text is being referenced.

as_quotes()
Return quote selectors for the selected text.

Return type List[TextQuoteSelector]

property child_passages: List[legislice.enactments.EnactmentPassage]
Return a list of EnactmentPassages for this Enactment’s children.

Return type List[EnactmentPassage]

clear_selection()
Deselect any Enactment text, including in child nodes.

Return type None

property code
Get “code” part of node identifier.

implies(other)
Test whether self has all the text passages of other.

Return type bool

property is_federal
Check if self is from a federal jurisdiction.

property jurisdiction
Get “sovereign” part of node identifier.

property level: str
Get level of code for this Enactment, e.g. “statute” or “regulation”.

Return type str

limit_selection(start=0, end=None)
Limit selection to the range defined by start and end points.

Return type None

means(other)
Find whether meaning of self is equivalent to that of other.

Self must be neither broader nor narrower than other to return True.

Return type bool

Returns whether self and other represent the same text issued by the same sovereign in the
same level of Enactment.

property node
Get the node that this Enactment is from.

property section
Get “section” part of node identifier.

select(selection=True, start=0, end=None)
Select text from Enactment.

Return type None

3.2. Enactments 25

https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextPositionSet
https://docs.python.org/3/library/typing.html#typing.List
https://anchorpoint.readthedocs.io/en/latest/api/selectors.html#anchorpoint.textselectors.TextQuoteSelector
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

legislice, Release 0.6.0

select_all()
Select all text of Enactment.

Return type None

select_more(selection)
Select text, in addition to any previous selection.

Return type None

select_more_text_at_current_node(added_selection)
Select more text at this Enactment’s node, not in child nodes.

Return type None

select_more_text_from_changed_version(other)
Select more text from a different text version at the same citation path.

Parameters other (EnactmentPassage) – An Enactment representing different text enacted
at a different time, at the same node (or USLM path citation) as self. This Element’s node
attribute must be the same string as self’s node attribute. It’s not sufficient for other to have
an Enactment listed in its _children attribute with the same node attribute, or for other to
have the same node attribute as an ancestor of self.

Return type None

select_more_text_in_current_branch(added_selection)
Select more text within this Enactment’s tree_selection, including child nodes.

Return type None

selected_text()
Return this provision’s text that is within the ranges described by self.selection.

Based on creating an anchorpoint.textsequences.TextSequence from this Enactment’s text content
and the ranges in its selection attribute.

Return type str

property sovereign
Get “sovereign” part of node identifier.

property text
Get all text including subnodes, regardless of which text is “selected”.

text_sequence(include_nones=True)
List the phrases in the Enactment selected by TextPositionSelectors.

Parameters include_nones (bool) – Whether the list of phrases should include None to indi-
cate a block of unselected text

Return type TextSequence

property title
Get “title” part of node identifier.

class legislice.enactments.CrossReference(**data)
A legislative provision’s citation to another provision.

Parameters

• target_uri – the path to the target provision from the document root.

• target_url – the URL to fetch the target provision from an API.

26 Chapter 3. API Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://anchorpoint.readthedocs.io/en/latest/api/sequences.html#anchorpoint.textsequences.TextSequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://anchorpoint.readthedocs.io/en/latest/api/sequences.html#anchorpoint.textsequences.TextSequence

legislice, Release 0.6.0

• reference_text – The text in the citing provision that represents the cross-reference. Gen-
erally, this text identifies the target provision.

• target_node – an identifier for the target URI in the API.

class legislice.enactments.InboundReference(**data)
A memo that a TextVersion has a citation to a specified target provision.

latest_location()
Get most recent location where the citing text has been enacted.

Return type CitingProvisionLocation

classmethod search_citations_for_reference_text(values)
Get reference_text field from nested “citations” model.

Return type Dict

class legislice.enactments.CitingProvisionLocation(**data)
Memo indicating where an Enactment can be downloaded.

Parameters

• node – location of the citing provision in a legislative code

• start_date – start date of the citing version of the provision

• heading – heading text for the citing provision

legislice.enactments.consolidate_enactments(enactments)
Consolidate any overlapping Enactments in a list.

Parameters enactments (Sequence[Union[Enactment, EnactmentPassage]]) – a list of
Enactments that may include overlapping legislative text within the same section

Return type List[EnactmentPassage]

Returns a list of Enactments without overlapping text

3.3 Citations

class legislice.citations.CodeLevel(value)
An enumeration.

class legislice.citations.Citation(**data)
A citation style for referring to an Enactment in written text.

Intended for use with Citation Style Language (CSL).

static csl_date_format(revision_date)
Convert event date to Citation Style Language format.

Return type Dict[str, List[List[Union[str, int]]]]

csl_dict()
Return citation as a Citation Style Language object.

Return type Dict[str, Union[str, int, List[List[Union[str, int]]]]]

csl_json()
Return citation as Citation Style Language JSON.

Return type str

3.3. Citations 27

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

legislice, Release 0.6.0

legislice.citations.identify_code(jurisdiction, code)
Find code name and type based on USLM citation parts.

Return type Tuple[str, str]

3.4 Enactment Groups

class legislice.groups.EnactmentGroup(**data)
Group of Enactments with comparison methods.

__add__(other)
Combine two EnactmentGroups, consolidating any duplicate Enactments.

Return type EnactmentGroup

__ge__(other)
Test whether self implies other and self != other.

Return type bool

__gt__(other)
Test whether self implies other and self != other.

Return type bool

__hash__ = None

__iter__()
so dict(model) works

__repr__()
Return repr(self).

Return type str

__str__()
Return str(self).

implies(other)
Determine whether self includes all the text of another Enactment or EnactmentGroup.

Return type bool

28 Chapter 3. API Documentation

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

29

legislice, Release 0.6.0

30 Chapter 4. Indices and tables

INDEX

Symbols
__add__() (legislice.groups.EnactmentGroup method),

28
__ge__() (legislice.groups.EnactmentGroup method),

28
__gt__() (legislice.groups.EnactmentGroup method),

28
__hash__ (legislice.groups.EnactmentGroup attribute),

28
__iter__() (legislice.groups.EnactmentGroup method),

28
__repr__() (legislice.groups.EnactmentGroup method),

28
__str__() (legislice.groups.EnactmentGroup method),

28

A
as_citation() (legislice.enactments.Enactment

method), 22
as_quotes() (legislice.enactments.EnactmentPassage

method), 25

C
child_passages (legis-

lice.enactments.EnactmentPassage property),
25

Citation (class in legislice.citations), 27
citations_to() (legislice.download.Client method), 19
CitingProvisionLocation (class in legis-

lice.enactments), 27
clear_selection() (legis-

lice.enactments.EnactmentPassage method),
25

Client (class in legislice.download), 19
code (legislice.enactments.Enactment property), 22
code (legislice.enactments.EnactmentPassage property),

25
CodeLevel (class in legislice.citations), 27
consolidate_enactments() (in module legis-

lice.enactments), 27
content (legislice.enactments.Enactment property), 22

convert_quotes_to_position() (legis-
lice.enactments.Enactment method), 22

convert_selection_to_set() (legis-
lice.enactments.Enactment method), 22

cross_references() (legislice.enactments.Enactment
method), 22

CrossReference (class in legislice.enactments), 26
csl_date_format() (legislice.citations.Citation static

method), 27
csl_dict() (legislice.citations.Citation method), 27
csl_json() (legislice.citations.Citation method), 27
csl_json() (legislice.enactments.Enactment method),

22

E
Enactment (class in legislice.enactments), 22
EnactmentGroup (class in legislice.groups), 28
EnactmentPassage (class in legislice.enactments), 25

F
fetch() (legislice.download.Client method), 19
fetch_citations_to() (legislice.download.Client

method), 19
fetch_citing_provision() (legis-

lice.download.Client method), 19
fetch_cross_reference() (legislice.download.Client

method), 20
fetch_db_coverage() (legislice.download.Client

method), 20
fetch_inbound_reference() (legis-

lice.download.Client method), 20
fetch_uri() (legislice.download.Client method), 20

G
get_db_coverage() (legislice.download.Client

method), 20
get_identifier_part() (legis-

lice.enactments.Enactment method), 23
get_string() (legislice.enactments.Enactment

method), 23

31

legislice, Release 0.6.0

I
identify_code() (in module legislice.citations), 27
implies() (legislice.enactments.Enactment method), 23
implies() (legislice.enactments.EnactmentPassage

method), 25
implies() (legislice.groups.EnactmentGroup method),

28
InboundReference (class in legislice.enactments), 27
is_federal (legislice.enactments.Enactment property),

23
is_federal (legislice.enactments.EnactmentPassage

property), 25

J
jurisdiction (legislice.enactments.Enactment prop-

erty), 23
jurisdiction (legislice.enactments.EnactmentPassage

property), 25

K
known_revision_date (legis-

lice.enactments.Enactment property), 23

L
latest_location() (legis-

lice.enactments.InboundReference method),
27

level (legislice.enactments.Enactment property), 23
level (legislice.enactments.EnactmentPassage prop-

erty), 25
limit_selection() (legislice.enactments.Enactment

method), 23
limit_selection() (legis-

lice.enactments.EnactmentPassage method),
25

limit_selection_to_current_node() (legis-
lice.enactments.Enactment method), 23

M
make_selection() (legislice.enactments.Enactment

method), 23
make_selection_of_all_text() (legis-

lice.enactments.Enactment method), 23
make_selection_of_this_node() (legis-

lice.enactments.Enactment method), 23
make_text_version_from_str() (legis-

lice.enactments.Enactment class method),
24

means() (legislice.enactments.Enactment method), 24
means() (legislice.enactments.EnactmentPassage

method), 25

N
nested_children (legislice.enactments.Enactment

property), 24
node (legislice.enactments.EnactmentPassage property),

25
normalize_path() (in module legislice.download), 21

P
padded_length (legislice.enactments.Enactment prop-

erty), 24

R
raise_error_for_extra_selector() (legis-

lice.enactments.Enactment method), 24
rangedict() (legislice.enactments.Enactment method),

24
read() (legislice.download.Client method), 20
read_from_json() (legislice.download.Client method),

21
read_passage_from_json() (legis-

lice.download.Client method), 21

S
search_citations_for_reference_text() (leg-

islice.enactments.InboundReference class
method), 27

section (legislice.enactments.Enactment property), 24
section (legislice.enactments.EnactmentPassage prop-

erty), 25
select() (legislice.enactments.Enactment method), 24
select() (legislice.enactments.EnactmentPassage

method), 25
select_all() (legislice.enactments.Enactment

method), 24
select_all() (legislice.enactments.EnactmentPassage

method), 25
select_more() (legis-

lice.enactments.EnactmentPassage method),
26

select_more_text_at_current_node() (legis-
lice.enactments.EnactmentPassage method),
26

select_more_text_from_changed_version() (leg-
islice.enactments.EnactmentPassage method),
26

select_more_text_in_current_branch() (legis-
lice.enactments.EnactmentPassage method),
26

selected_text() (legis-
lice.enactments.EnactmentPassage method),
26

sovereign (legislice.enactments.Enactment property),
24

32 Index

legislice, Release 0.6.0

sovereign (legislice.enactments.EnactmentPassage
property), 26

span_length (legislice.enactments.Enactment prop-
erty), 24

T
text (legislice.enactments.Enactment property), 24
text (legislice.enactments.EnactmentPassage property),

26
text_sequence() (legislice.enactments.Enactment

method), 24
text_sequence() (legis-

lice.enactments.EnactmentPassage method),
26

title (legislice.enactments.Enactment property), 24
title (legislice.enactments.EnactmentPassage prop-

erty), 26
tree_selection() (legislice.enactments.Enactment

method), 24

U
update_data_from_api_if_needed() (legis-

lice.download.Client method), 21
update_enactment_from_api() (legis-

lice.download.Client method), 21
update_entries_in_enactment_index() (legis-

lice.download.Client method), 21
uri_from_query() (legislice.download.Client method),

21
url_from_enactment_path() (legis-

lice.download.Client method), 21

Index 33

	Guides
	Downloading Legislation
	Using an API token
	Fetching a provision from the API
	Loading an Enactment object
	Downloading prior versions of an Enactment
	Exploring the structure of a legislative code
	Downloading Enactments from cross-references
	Downloading Enactments from inbound citations

	Comparing Enactments
	Features of an Enactment
	Selecting text
	Comparing Selected Text
	Combining Enactments
	EnactmentGroups
	Converting Enactments to JSON
	Formatting Citations (Experimental)

	Development Updates
	Reporting Bugs and Issues
	Current Updates
	GitHub
	Twitter
	Changelog
	0.6.0 (2021-09-20)
	0.5.2 (2021-05-20)
	0.5.1 (2021-05-08)
	0.5.0 (2021-03-26)
	0.4.1 (2020-12-31)
	0.4.0 (2020-12-29)
	0.3.1 (2020-12-12)
	0.3.0 (2020-11-17)
	0.2.0 (2020-08-30)
	0.1.1 (2020-08-23)

	API Documentation
	Download Client
	Enactments
	Citations
	Enactment Groups

	Indices and tables
	Index

